
Assessing the Suitability of the EPIC Crop Model
for Use in the Study of Impacts of Climate

Variability and Climate Change in West Africa

James O. Adejuwon*

AIACC Working Paper No. 5
May 2004

*Corresponding Author. Email address: jadejuwo@oauife.edu.ng,
jadejuwon@yahoo.com

An electronic publication of the AIACC project available at www.aiaccproject.org.



AIACC Working Papers, published on the web by Assessments of Impacts and
Adaptations to Climate Change (AIACC), is a series of working papers produced by
researchers participating in the AIACC project. The papers published in AIACC Working
Papers have been peer reviewed and accepted for publication as being (i) fundamentally
sound in their methods and implementation, (ii) informative about the methods and/or
findings of new research, and (iii) clearly written for a broad, multi-disciplinary
audience. The purpose of the series is to circulate results and descriptions of
methodologies from the AIACC project and elicit feedback to the authors. Because
many of the papers report preliminary results from ongoing research, the
corresponding author should be contacted for permission before citing or quoting
papers in this series.

The AIACC project is funded by the Global Environment Facility, the U.S. Agency for
International Development, the Canadian International Development Agency, and the
U.S. Environmental Protection Agency. The project is co-executed on behalf of the
United Nations Environment Programme by the global change SysTem for Analysis
Research and Training (START) and the Third World Academy of Sciences (TWAS).
AIACC seeks to enhance capabilities in the developing world for responding to climate
change by building scientific and technical capacity, advancing scientific knowledge,
and linking scientific knowledge to development and adaptation planning. AIACC
supports 24 regional studies in Africa, Asia, the Caribbean, Latin America and Oceania
with funding, mentoring, training and technical assistance. The studies are active in 46
developing countries and engage approximately 300 developing country scientists and
students, 40 developed country scientists, and institutions in both the developing and
developed world.

For more information about the AIACC project, and to obtain copies of other papers
published in AIACC Working Papers, please visit our website at www.aiaccproject.org.



1

ASSESSING THE SUITABILITY OF THE EPIC CROP MODEL FOR USE IN THE
STUDY OF IMPACTS OF CLIMATE VARIABILITY AND CLIMATE CHANGE IN

WEST AFRICA

AUTHOR James Adejuwon (Msc, PhD (London)
Department of Geography, Obafemi Awolowo University, Ile-Ife, Nigeria
E-mail: jadejuwo@oauife.edu.ng, jadejuwon@yahoo.com
Telephone: +234 36 232324, +234 803 7253118

ABSTRACT

Scientists of the US Department of Agriculture developed the EPIC Crop Model for use in that
country and it has been successfully applied in the study of erosion, water pollution, and crop
growth and production.  However, it is yet to be introduced for serious research purposes in other
countries and other regions. This paper is designed to test the applicability of EPIC for the
assessment of the potential impacts of climate variability and climate change on crop
productivity in Sub-Saharan West Africa. Among the crops whose productivity has been
successfully simulated with the crop model are five of West Africa’s staple food crops: maize,
millet, sorghum (guinea corn), rice, and cassava. Using the model, the sensitivities of maize,
sorghum and millet to seasonal rainfall were demonstrated with coefficients of correlation
significant at over 98 percent confidence limits. Validation tests based on a comparison of
observed and model generated yields of rice and maize were conducted. In the case of maize,
model simulated yields varied between 97 and 110 percent of observed yields. In the case of rice,
model simulated yields varied between 109 and 117 percent of observed yields. ‘Observed
yields’ in this context were the mean yields of several specified crop varieties in nationally
coordinated experiments (trials). The main problems of validation are related to the multiplicity
of crop varieties with contrasting performances under similar field conditions.

There are also the difficulties in appropriately representing, in the model, the microenvironments
under which crops are produced in real life. Thus there is always some gap between observed
and simulated yields resulting from data and/or model deficiencies. Attempts at closing the gaps
between observations and predictions should be directed mainly at these deficiencies. Based on
the results of the sensitivity and the validation tests, our conclusion is that the model could be
satisfactorily employed in the assessment of impacts of, and adaptations to climate variability
and climate change. The use of the model for estimation of production and for the assessment of
vulnerabilities needs to be pursued in association with further field surveys and field
experimentation.

Key Words: Crop Model; Climate Change, Climate Variability, Impacts, Adaptations, West
Africa. .
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INTRODUCTION

Crop growth simulation models are research tools usually applied in assessing the relationship
between crop productivity and environmental factors. They have been shown to be efficient in
determining the response of crop plants to changes in weather and climate. Examples of such
models include EPIC (Williams et al, 1989), CERES (Ritchie et al, 1989), GAPS (Butler and
Riha, 1989), SOYGRO (Jones et al, 1989) and IBSNAT (IBSNAT, 1989). In most cases these
crop models have been developed in particular localities and they are not always applicable in
other regions without modification. Therefore, when introducing such crop models into new
regions, their applicability needs to be evaluated.

This paper is designed to assess the applicability of EPIC (Erosion Productivity Impact
Calculator) Crop Model for use in the study of impacts of climate variability and climate change
on crop productivity in Sub-Saharan West Africa. The effectiveness of EPIC as a research tool in
West Africa will be determined largely by its capacity to simulate the sensitivity of the crop
production systems to seasonal rainfall. This is because moisture is the main limiting factor on
crop productivity in tropical ecological systems such as those characterizing West Africa. In the
tropics, crop sensitivity to moisture is particularly keen during the stage of vegetative growth and
also at the stage of grain infilling. In West Africa, as in the other parts of the low land tropics, the
weather forecaster is seldom asked what the temperature will be, but everyone is greatly
concerned about whether or not it is going to rain.

The data used for the study are for sites within Nigeria. What this implies, is that the country is
being used as a case study for Sub-Saharan West Africa. The chief justification for this is that the
country truly represents the climatic profile from the very wet to the semi-arid ends of the sub-
continent. All the indicator vegetation types of the various climate types are present in the
country. Thus, northwards from the very humid, eastern, coastal locations, to the drier margins,
the vegetation profile includes Moist Evergreen Rain Forests, Dry Semi-Evergreen Rain Forests,
Derived Savanna, Southern Guinea Savanna, Northern Guinea Savanna, Sudan Savanna, and
Sahel Savanna. The crops used for the assessment include maize, rice, sorghum and millet. These
are among the staple food crops of West Africa (Murdock, 1960) whose growths have already
been simulated with EPIC.

Climate Change consequent upon increasing concentrations of greenhouse gases in the
atmosphere is a topical contemporary environmental issue. The IPCC (Intergovernmental Panel
on Climate Change) in its Third Assessment Report (IPCC, 2001a) has demonstrated that it is no
longer in doubt that global climate changed significantly during the 20th Century, and that
climate may continue to change more precipitously in the coming centuries. This change will
continue irrespective of whether attempts at mitigation through implementation of the Kyoto
Protocol to the UNFCCC (United Nations Framework Convention on Climate Change) are
successful (IPCC, 2001). It had been concluded in the Second Assessment Report (IPCC, 1996)
and reaffirmed in the Third Assessment Report that the magnitude and direction of change in the
various climate elements will differ from one major region to the other. It was noted that climate
change could be beneficial in certain regions and detrimental elsewhere. It was suggested that the
less developed countries and regions are likely to experience the worst of the consequences of
climate change partly because of negative changes in water availability in the tropical regions
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and partly because the communities concerned are poorly equipped to adapt. One of the sectors
that will be exposed to the potential negative changes in climate is food production. It has
therefore become imperative, while trying to roll back climate change through the
implementation of the Kyoto Protocol, to formulate strategies for living with a changed global
climate. Such strategies will require an understanding of the observed impacts of climate
variability and the potential impacts of climate change.

ACQUISITION AND GENERAL FEATURES OF THE MODEL

The newest version of EPIC can be downloaded from www.tamu.edu at Blacklands Research
Station (Temple). EPIC requires 446 items of input data; three hundred of which are the climatic
characteristics of each modeled site. As downloaded from the web, the crop model comes with
soil and climate data that could be used to create program files for any locality in the United
States, including its associated islands. For example, soil files in EPIC format for about 900 soil
series representing a great majority of soils characterizing every part of the USA are included in
the downloaded package. Also included in the package are comprehensive climate data for more
than six thousand weather stations. To load the climate data appropriate for any USA site only
takes a few seconds. The first problem encountered in attempting to use EPIC for research in
West Africa is that such data as are necessary for creating program files for experimental sites
are not easily available. Where the primary data are available, weeks and sometimes months of
computation are needed to convert them into the format required by EPIC. The first version of
EPIC8120 as downloaded from the web could not respond when latitudinal locations were set at
15 degrees or less. We had to consult the originators of the model (Jimmy Williams of USDA
Research Service) for trouble shooting the problem. While solving the problem it was admitted
that they had limited experience in tropical environments and that the earlier versions might
indeed have problems in areas outside the USA. Some modifications were made to the earlier
versions that made them work. Versions subsequently downloaded did not have the latitude
problem. We also had a problem simulating cassava growth, which was similarly attended to.

EPIC consists of a main data file created for each farm level site. The main data file incorporates
program control codes, general site data, water erosion data, climate data, management
information operations codes and management information operation variables. To run the
model, three other files (daily weather, soil and operations schedule) are required. Each daily
weather file gives details of weather including: rainfall, solar radiation, relative humidity,
minimum and maximum temperature as well as wind speed. The daily weather file includes
observed data when they are available. However, the model is capable of generating such data
that are not available. Whenever the file is created for a specified ‘past’ period for example
‘1986’ observed data in respect of at least one parameter, must be used. Thus to simulate yield
for 1986 growing season, the weather file for 1986, created with 1986 daily weather data, is fed
into the model.  To subsequently simulate yield for 1987, the 1986 file is withdrawn and replaced
with another created for 1987. If, however, the simulation is for a future period, for example,
2010 to 2039, the model, based on projected climatic data, generates all the daily weather
information required. The soil files provide details of the characteristics of the soil series found
at the site. The ‘Operations Schedule’ files identify the specific crop or crops and include the
details of farm operations such as timing, density of planting, tillage, type and amounts of
fertilizer and pesticides applied, potential heat units, among others.
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APPLICATION OF THE MODEL

There are five different ways in which EPIC Crop Model could be employed. These include:
• Estimation of crop productivity, that is, the yield of the crop per unit area of land planted

to it;
• Estimation of total crop production within a given land area or territory;
• Assessment of the impacts of climate variability and climate change on crop yields and

crop production (impact is defined as the change observed in the form or function of a
biophysical or human system as a result of a change in the environment);

• Assessment of the vulnerability of crop production systems to climate variability and
climate change (vulnerability is the probability that a human or a biophysical system falls
into a state of disaster as a result of environmental changes);

• Assessment of adaptation options and strategies for managing the negative impacts of
climate variability and climate change.

Crop productivity is the economic yield usually expressed as tons per hectare. It can be estimated
for any unit area, starting from plots less than one hectare, and going up to local government
areas, states within a country, nation states and major world regions. Yield is a measure of
performance of the crop plant, enhanced by favorable environmental factors and reduced by
constraining factors. Yield or productivity is the basic input for the computation of production
and the assessments of impacts, vulnerabilities and adaptation options. For a crop model to be
useful in estimating productivity, model yields need to be credible substitutes for observed
yields.

Crop production is simply the total amount of seed, grain or tuber produced in specified areal
units. For large regions, production figures represent the sum of farm outputs from all the farm
units within them. As in the case of productivity, model performance is rated according to the
closeness of model output to observed yields. In other words, yields per hectare from model
output multiplied by area harvested must yield results close to the production figures as observed
on individual farm plots and aggregated for each geographical region as a whole.

Impact is the change observed in the form or function of a biophysical or human system as a
result of a change in the environment. Impact is measured as the difference between the situation
before and after the environmental change occurred. In the specific case of the impact of climate
change or variability on crop production, the impact is the difference between observed yield
before and after the change or variation in climate occurs. The crop model allows us to hold
constant all crop environment factors while changing the climatic factor. To simulate the yield of
a crop for a given year, the daily weather file for that year is used. This file is withdrawn and
replaced in order to simulate the yield of another year. Thus any change (in the yield) from one
run of the model for a given year to another run for the succeeding year could be logically
ascribed to the change in climate from the first to the second year.

Vulnerability expresses the probability that a human or a biophysical system falls into a state of
disaster as a result of environmental changes. In this study, the system of interest is staple food
crop production while the environmental change of concern relates to climate. The threshold to
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disaster is estimated as the point in the changing environment at which crop failure occurs. Crop
failure could be defined in various ways. In one definition, the crop does not grow to produce
any seed, grain or tuber and therefore no harvesting takes place. In another definition the crop
grows to maturity but the value of the output in the form of grain, seed or tuber is as low as not
to be worth the cost of harvesting. However, in our main research, we have adopted the
technique of cost-benefit analysis. With this technique, the crop is assumed to have failed where
the value of the farm output is less than the total costs of production. In this case vulnerability to
climate variability is the probability that the value of the crop produced each year is less than the
costs of production. If over a thirty-year period, the value of the crop produced is less than the
costs of production in six years, then the vulnerability (probability) is expressed by an index of
‘0.2’.

Adaptations are the adjustments, which have to be made to crop production systems in order to
live successfully with a changed climate. The probable adaptive responses are not new. They
include farm level practices such as: change of planting dates, adoption of water conservation
practices, change to early maturing varieties to mitigate shortened growing season, change to
drought tolerant crop varieties, and change to high yielding crop varieties to take advantage of
unusually favorable weather. Other adaptation strategies include: application of irrigation and
adoption of multiple cropping to take advantage of longer growing seasons. Policy makers
require an assessment of the benefits derivable from the adoption of the various adaptation
options. Computation of such benefits would require knowledge of the pre- and the post-
adoption yields in addition to the costs of the adaptation itself. In addition, a comparison of the
net benefits derivable from the various adaptation options would be useful in making the choice
among potential adaptation options. Some of the potential options cannot be integrated into
EPIC. In such cases the crop model cannot be effectively employed in the assessment. However,
in cases involving farm practices, such as irrigation, change of planting dates, crop substitution,
multiple cropping, application of fertilizers, which can be incorporated into EPIC, the model
could be extremely useful in assessing adaptation options.

To be able to successfully estimate production, the model must be able to accurately predict
observed yields. In assessing vulnerability, the model must be capable of accurately estimating
yields corresponding to various annual weather patterns and specifically the yields for the year
when the climate is at a threshold between crop success or crop failure. Success in the
assessments of impacts and adaptations does not depend on the accuracy of yield predictions as
much as it depends on the extent to which the differences between pre impact (adaptation) and
post impact (adaptation) yields are reflected. In other words, what is needed for the assessment
of impacts of climate variability is the difference between pre- and post- impact productivity and
production. Even if there are disparities between observed and simulated yields, the simulated
differences could still truthfully reflect the observed differences in magnitude. Also in the
assessment of adaptation options, it is the differences between pre- and post- adoption yields and
production that are taken into account. In other words, model performance could be adjudged
satisfactory once the model truthfully indicated such differences, not necessarily the actual
productivity or production.
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MODEL TESTING

For application in our area of study, a two-stage approach was adopted to evaluate EPIC. The
first stage consisted of sensitivity analysis, while the second stage consisted of validation. In
sensitivity analysis, changes in model output following changes in environmental factors were
evaluated. The environmental changes introduced into the model may be arbitrary or may consist
of real world observations. The evaluation will show whether model output is justified by the
changes in the environmental factors. For example, application of fertilizer is expected to result
in increased yields. Sensitivity is confirmed and model performance rated high when the model
is successfully employed to demonstrate this. In other words, sensitivity analysis helps to
determine whether the crop model could be used to test an a-priori hypothesis. Validation
represents a more rigorous test of model performance involving the comparison of real world
observations with the results of model outputs achieved with conditions similar to those
prevailing at the time the real world observations were made. Attempts to create more accurate
and realistic data files and thereby close the gaps between observations and predictions are
usually described as model calibration. In this context, calibration should be conceived as any
modification that could be effected to reduce the gaps between observed and predicted yields.
Calibration is a continuing exercise requiring contributions from users especially in places other
than where the model originated.

SENSITIVITY ANALYSIS

It is necessary to always bear in mind that the sensitivity tests are conducted on the model, not on
the real world crop production systems. It is hardly in doubt that the real world systems are
sensitive to changes in weather. The hypotheses in the current exercise are about whether the
model could replicate the sensitivity of the real world systems. In conducting the sensitivity tests,
archival weather data could be used where they are available. But they will not be available
where the focus is on climate change, in which case artificial data is acceptable. Because of
uncertainties associated with predicting climate change, researchers commonly use climate
scenarios to estimate how climate affects a system (in this case agricultural production).
“Scenarios derived from GCMs and arbitrary sensitive tests (e.g., +2o C and +4o C temperature
changes, +/- 10% precipitation change) are recommended to estimate potential future changes in
yield and other agronomically important variables.” (U.S Country Studies Program, Version 1.0
p5-3).  In the assessment of the impacts of climate variability, we used archival daily rainfall
data, which are available for over 600 stations, more than 90 percent of which are limited in their
observations to a single climatic element. For the study of the impacts of climate change in our
main study (not reported here), we constructed scenarios with GCM (General Circulation Model)
generated data for the respective time slices of 1961-90, 2010-2039, 2040-2069 and 2070-2099.
For each of these time slices a different main EPIC file is created. Thus, even though all the daily
weather data are model generated, they differ from one time slice to another since each set is
based on the climate of the respective time slices.

Seasonal Rainfall
To test sensitivity to seasonal rainfall in the current exercise, we adopted climate and weather
records for Maiduguri in the Sahel Zone in Nigeria. The main data file was created with the
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means of the records from 1961 to 1995. For the daily weather files, we employed the daily
rainfall data for 1988 to 1999. The crops were: rice, millet, sorghum and maize. In our simulation
exercises, the crops were planted on June 1, each year, and harvested on August 30. June 1 is the
date of the climatic ‘onset’ of the rainy season and is the more likely date, in the calendar, for the
farmers to plant their crops. The usual practice is for farmers to wait for the first heavy
downpours before planting their crops. Further delay stands the risk of crop failure resulting
from abrupt termination of the rainy season later in the year. Moreover, as the rainy season
progresses, less solar radiation reaches the surface resulting in a reduction of both vegetative and
reproductive growth, and therefore a decrease in yield. We opted to simulate for early-maturing
varieties of the various crops as they have become popular with the local farmers in recent years.
For example, some maize varieties mature after 120 days from planting while others mature
within 90 days. The most recently introduced varieties in Nigeria belong to the latter group,
which is usually described as “early maturing”. It could be noted that while the weather records
used were real world records, the model outputs were not real world outputs because at this stage
our interests were not validation, but sensitivity. The outputs of the EPIC runs are depicted in
Table 1. Also in the table are: the total rainfall for the first month, the first two months, the three
months from sowing to harvesting, and the number of rain days.

The driest year with respect to the total for the three growing season months and the first two
months was 1994. It was also the year with the lowest yield for the four crops modeled. The year
with the next lowest yield for the four crops after1994 was 1992. It is also the year with the
lowest June-July rainfall, that is, the first two months after planting. At the other end of the
moisture regime, the wettest year, 1999, leads the other years in the yields of maize, sorghum
and pearl millet. The year, 1999, came third among ten years in the simulated yield of rice. Table
2 depicts the sensitivity of the simulated yields of the various crops to rainfall parameters in
terms of correlation coefficients. The sensitivities of simulated yields of maize, sorghum and
millet to the rainfall of the first two months after planting are demonstrated with values of r
significant at 99 percent confidence level. The corresponding values of r for the relationships
with the total rainfall from planting to harvesting are significant at 98 percent confidence limits.

However, it is not only with respect to rainfall that EPIC Crop Model could be used to
demonstrate sensitivity. In the following paragraphs, we demonstrate the sensitivities of model-
simulated yields to temperature, radiation and carbon dioxide concentration, using incremental
scenarios in anticipation of their use in climate change impact analysis. In this regard, we are
following the suggestions of the U.S. Country Study, Version 1.0, on page 4.11, that
“incremental changes in temperature and precipitation should be combined with the baseline
climate data to create incremental scenarios”.

Temperature
One way of testing model sensitivity to temperature is to increase artificially the minimum and
maximum temperature for each of the growing season months. In Table 3, yield for the baseline
situation as well as for three scenarios of increased temperature are depicted. The results indicate
an increase in EPIC-simulated yield corresponding to the increases in temperature. The optimum
temperature for the model maize variety as given in the parameter table is 25o C. August
minimum temperature at Ibadan, the experimental site, is lower than the optimum for maize.
Thus there could be room for increased temperature to promote increased yield of maize before
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the cardinal maximum temperature begins to constrain yield. It is therefore conceivable that, an
initial increase in temperature will bring about an increase in yield. However as temperature rises
to higher levels, a decrease in yield may set in. But before then, there will be a stage during
which the increases in yield will slow down. Table 3 seems to have captured this stage. Thus, as
depicted in the table, “increases in yield seem to be decreasing with increasing temperature”. We
interpreted this observation “as evidence of model sensitivity to the upper limits of the range of
temperature tolerance” In Southern Nigeria, the rainy season is the cooler part of the year.
Temperature does not follow the sun but varies in response to cloud cover.

Solar Radiation
Solar radiation is the primary determinant of biomass yield from which the other yields are
derived. One would therefore expect economic yields of crops to be related to the amount of
incident solar radiation. Consideration of model sensitivity to this factor is called for when
attempting to adapt a model developed for temperate latitude environment to a tropical region.
Day length is longer in the temperate latitude than in the tropics during the growing season.
However, the quantum of radiation received could be higher in the tropical environment than in
the temperate latitude as a result of a higher angle of incidence. In the particular case of West
Africa, the intensity of solar radiation depends more on the amount of cloud cover than on the
angle of incidence of sunlight. Climate change projections by the various Global Climate Models
for West Africa are for a higher level of solar radiation as a consequence of lower levels of cloud
cover. Decreases in cloud cover with respect to the 1961-90 mean are projected to continue to
the end of the 21st Century. (IPCC, 2001b)

Table 4 depicts the pattern of response of maize to different levels of solar radiation, according
to EPIC simulations at a site corresponding to the weather station in Jos, north central Nigeria.
The increases in solar radiation were introduced into EPIC while retaining the values of the other
climatic parameters at the levels of the 1961-95 means. The resulting increases in yield were
continuous, regular and considerable, more or less at the same percentage levels as the increases
in solar radiation. It could be recalled that potential yield is determined in EPIC primarily by the
amount of solar radiation received. The other climatic determining factors of yield play
constraining roles, reducing potential to actual economic yields. This conforms to our
observations in an earlier study to the effect that lower amounts of solar radiation characterizing
the main growing season months in Nigeria tend to depress the yield of maize (Adejuwon, 2002).
Maize planted in April, at the onset of the rainy season, when cloud cover was relatively low,
produced significantly higher yields than maize planted in May or June, when the rainy season
was well under way. It is therefore not surprising as depicted in the table, that there were
increases in yield in response to increases in solar radiation. It is conceivable that the levels of
solar radiation at the experiment site, during the growing season for the 1961-90 period, were
sub-optimal for maize production. If changes in climate, as the 21st century progresses, turn out
to be as they are currently being projected (IPCC, 2001b), West Africa may experience
substantial increases in the yields of cereal crops, not as a result of increases in moisture supply
or temperature, but in response to higher levels of solar radiation.

Carbon dioxide
Carbon dioxide and water are the main feedstocks for the processes of primary production, that
is, photosynthesis, upon which life on the earth’s surface ultimately depends. Carbon dioxide
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input into photosynthesis comes from the atmosphere. One would expect an enhanced level of
carbon dioxide concentration in the atmosphere to increase the gradient between the external air
and the air spaces inside the leaves, thus promoting higher levels of diffusive transfer and
absorption of CO2 into the chloroplasts and higher levels of photosynthesis and of biological
productivity. Higher concentrations of atmospheric carbon dioxide should also induce plants to
be more economical in the use of water. Thus with higher concentrations of carbon dioxide,
crops should be less subject to water stress in areas normally considered marginal with respect to
precipitation. The sensitivity of maize to changes in the atmospheric concentration of carbon
dioxide as depicted in Table 5 confirmed this. The location used is Jos in Central Nigeria. For
each trial, the crop was planted on the first of June during a year with very high growing season
rainfall. The 20-ppm change in CO2 concentration (from 350 ppm to 370 ppm) resulted in yield
increases of 80 kg/ha, while the much greater 150-ppm change in CO2 concentration (from 500
ppm to 650 ppm) resulted in further yield increases of only 36 kg/ha. The model, in these results,
confirmed the progressively smaller response of maize to higher carbon dioxide concentrations.
This should be expected because maize is a C4 plant (Fischer et al., 1996).

VALIDATION

Once the crop model is adjudged capable of demonstrating sensitivity of the crop plant to climate
variability and climate change, the next exercise in testing the model is validation. Validation
seeks to establish the reliability of the outputs as possible substitutes for observed data in
estimating production and assessing vulnerability. In the process of validation, observed yields of
crops are compared with the model outputs for the same crop, the same sites and the same
period. Ideally, for the model outputs to be considered reliable for the stated objectives, model
outputs must be reasonably close to the observed yields.

Validation using the results of the 1986 Maize trial Experiments
Single field level data on yield are not available in Nigeria except on the research sites of the
Agricultural Research institutes. Table 6 depicts the grain yields in tons/ha of early maturing,
open pollinated maize varieties in the 1986 nationally coordinated trials in Nigeria, under the
auspices of the International Institute for Tropical Agriculture (IITA, 1986a). The 15 varieties
included in the table, consisted of cultivars either being used or being developed for adoption in
the country. Observed yields in respect of the varieties were presented from row 3 to 17. In row
18 we gave the average yield of the varieties per location, while in row 19 we depicted the
coefficients of variation. The latter is an expression of the standard deviation as a percentage of
the mean yield of the varieties. In row 20, we entered the yield simulated by EPIC. In the last
row we depicted the yield simulated by EPIC as a percentage of the mean yield of the varieties.
The coefficients of variation among the yields of the 15 maize varieties fall between 8 and 17
percent. More important for validation purposes is the fact that yields simulated by EPIC fall
between 97 and 110 percent of the mean yield of the varieties used in the trials. In other words,
and it can be observed from the table, simulated yields in all locations fall within the bands set
by the highest and the lowest observed variety yields. Except for the Kano station, there is
virtually no difference between observed yields of the 8322-13 variety and the outputs from
EPIC simulations. Also the observed yields of 8321-21, 8595-2, 8505-3, and 8322-13 varieties
were generally closer to the outputs of model simulations than the mean yield of the varieties.
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Although our immediate interests are in the differences between observed and simulated yields,
it could be observed that there were substantial differences between the yields recorded at the
various sites. Variation in yield from site to site was probably a result of differences in the
amounts of solar radiation received. The amounts of solar radiation received are usually higher in
the northern parts of the country than in the south (Davies, 1965). Following this, higher yields
are recorded for northern than for southern stations. For example, the average yield for Benin,
the most southerly location is 3.5 tons per hectare compared with 5.9 tons per hectare for Kano
which is the most northerly location.

Validation with the results of the 1986 Rice Trial Experiments
In Table 7 we present the results of the 1986 nationally coordinated upland rice trials involving
six varieties (IITA, 1986b). There is much contrast in yield among the varieties. In Ibadan, yields
vary from 0.8 tons per hectare to 3 tons per hectare. Average yield is 1.72 t/ha; standard
deviation is 0.84, while the coefficient of variation is 49 percent. At Ikenne (close to Lagos),
coefficient of variation is 17 percent while the average is 1.38 tons. At Onne (near Port Hacourt),
yields vary between 1.18 tons /ha and 3.07 tons /ha with a coefficient of variation of 27 percent.
In all the stations, model simulated yields are higher than the mean observed yields. However,
model simulated yields still fall between 109 and 117 percent of the means of the observed
yields. At Ikene, model yield is higher than each of the observed variety yields whereas at Onne
and Ibadan, model yields are respectively higher than one and two out of the six observed variety
yields. Comparing observed and simulated yields at individual levels shows that the observed
yields of variety Tox 1854 – 208 – 12 – 101 are consistently closer to the model simulated
yields.

CALIBRATION

Notwithstanding the observations in the preceding paragraph, there will always be some
disparity between observed and simulated yields resulting from model or data deficiencies.
Attempts to close the gaps between observations and model predictions should therefore start
with ensuring that the model truthfully reflects the determining environmental factors, the farm
operational schedules as well as the forms and the functions of the crop plants.

Climatic Records:
For example, the type of climatic records required to run EPIC is kept at very few locations.
Therefore models, in the best of circumstances are constructed with climate data gathered some
distance away from the desired sites. With a land area of 923,000 square kilometers, there are
fewer than 30 synoptic weather stations in Nigeria where the full complement of the data needed
are observed. The usual practice is to adopt the data for the nearest weather station, which, in
some cases could be more than 50 km from the experimental site. More realistic data could be
provided through statistical or GIS-based interpolation. This procedure assumes minimum
influence of topography. Using Arc View Spatial Analyst Extension, it is now possible to
procure data through interpolation for unit areas as small as 1 km squared. Among the techniques
commonly used in interpolating climate data are: IDWA (Inverse Distance Weighting
Averaging); splinting and krigging (Hartkamp et al, 1999). However, all of these will involve
another set of computationally demanding exercises.
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Soil
At a given locality, there are several soil types, each with a different capacity to support crop
growth. The choice of the appropriate soil type may be the only requirement to close the gaps
between observed and simulated yields. In Table 8 we demonstrated the considerable differences
in simulated yields that could result from the choice of soil at three locations: Ibadan, Benin and
Jos. We used 1986 weather data for the simulations.

The three soil types used for the Ibadan site belong respectively to Iwo series, Osun series and
Apomu series. Iwo is described as clayey, while Osun is poorly drained and Apomu is sandy. The
clayey soils are usually rated higher in fertility status than either the sandy or the poorly drained
soils. The respective yields of 3.739, 3.049, and 1.689 tonnes per hectare therefore conform to
expectations. Because the planting date was April 1, at the beginning of the rainy season, poor
drainage proved to be less of a constraint than anticipated. Hence the relatively high yield was
recorded for Osun series. The lesson that could be learnt from these results is that the choice of
appropriate soils is very crucial to ensuring minimum disparity between observed and simulated
yields.

Crop Variety
Crop characteristics, however, cannot be fully truthfully reflected in the model for the simple
reason that the model usually comes with a crop file that includes a single, unidentified variety,
whereas there are tens and in many cases, hundreds of varieties of the same crop in real life
situations. Some of the varieties bear distinguishing characteristics, while most of them cannot
be separately identified either on the basis of form or function. However, planted with the same
operations schedule and under the same environmental conditions, each variety is capable of
vastly different levels of yield. Where the objective of the study includes estimation of
production, field surveys are necessary to provide necessary ratios between observed yield of
each variety and model simulated yields.

Three varieties of maize came with one of the EPIC8120 versions. These were used to run the
model for a number of locations in Nigeria. The results are presented in Table 9. Planting dates
at each location were selected to avoid the earlier parts of the rainy season when there could be
inadequate rainfall. For all the stations in the forest belt, maize was planted on the 1st of April,
and for the sites in the drier areas, planting took place on the 1st of June. It could be observed that
EPIC recognized the different maize varieties as indicated in the significant differences in their
yields. Average yield varied from 2.4 tons per hectare for M1, to 0.3 tonnes per hectare for M2
and 1.2 tons per hectare for M3. These results also suggest that each crop variety needs to be
separately modeled. The disparities in yield could also be interpreted to mean that M1 is adapted
to the environment in Nigeria while M2 and M3 are not. Thus while attempting to bridge the gap
between observed and simulated yield, attempts should be made to ensure that the crop
parameters in the model truthfully represent the actual cultivars in the field.

The authors of the model are only favorably disposed to users making changes to the program
control codes, information operating codes and crop parameters on the basis of rigorous
experiments. At the same time they have left two ends, accessible to users, in the forms of
choices of PHU (potential heat units) and potential evapo-transpiration equations, which might
be adopted to reduce the gaps between observed and simulated yields.
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EPIC comes with five ET equations from which the user of EPIC has to make a single choice for
a simulation exercise. The equations include: Penman-Monteith, Penman, Prietley-Taylor,
Hargreaves and Baier-Robertson. For the same location, choice of potential ET equation could
result in significant differences in yield. To demonstrate the relationship between yield of maize
and the choice of ET equations, we adopted yields of maize observed in an agricultural
experimental station, Ilora for 1996, 1997 and 1998 crop growing seasons. We then proceeded to
conduct five EPIC runs, adjusting the data file to make use of Penmann-Monteith’s, Penman’s,
Priestley-Taylor’s, Hargraves’ and Baier-Robertson’s equations respectively. The results
depicted in Table 10, show that simulations run with Penman-Monteith equation are nearest to
the observed yields. One might be tempted to conclude from the results that Penman-Monteith’s
equation is the most appropriate to be used in simulating yields of the two particular maize
varieties, specifically at Ilora. However, the appropriateness of the particular equation needs to
be confirmed by field measurements of evapotranspiration or soil water extraction at the site.

Another parameter, which controls the magnitude of model yield, is potential heat units (PHU).
Subtracting a crop specific base temperature from the average daily temperature derives the heat
units. Whenever the average temperature is higher than the base temperature, heat units
accumulate. In real life situations, phenological development of the crop is based on daily heat
unit accumulation. Thus there should be a given amount of heat units required for the various
stages of development and maturity of a given crop or crop variety. EPIC defines each crop by
assigning values to about 50 crop parameters. However while the values for the other crop
parameters were set and input in the crop parameter file, not to be tampered with by the user, that
of the PHU is made to float within the Operations Schedule file, and adjusted for the proper
cultivar or crop variety for a location.  The choice of PHU is thus left to the user while creating
an OPS (operations schedule) file. For example, in the USA, experiments conducted at various
sites indicated that the PHU required for maturity by corn varies between 1000 and 2,900
(Williams et al, 1989: 506). Several varieties were involved but the emphasis was on site and
geography. In situations where the crop variety is unknown or anonymous, one could reduce the
gap between simulated and observed yields by adjusting the PHU in the Operations Schedule
File, (Easterling et al, 1996). At the same time one would have provided phenological definition
to the unknown cultivar. In Table 11, we attempted to demonstrate the relationship between
observed yields of maize at Ilora, and the simulated yields corresponding to various values of
PHU as adjusted in the ‘Operations Schedule’ file. These results show that simulated yields are
closest to observed yields when PHU is set at 1000 and farthest when it is set at 1800. Our
interpretation of the results is that they have helped to define the particular crop variety planted
at Ilora. There in no doubt that such a definition will help increase the capacity of the model to
predict crop yields. While some varieties require heat units as high as 2000 units, others need
less than 1100 units.

CONCLUSIONS AND POTENTIAL MODEL PERFORMANCE

In conclusion, there is little doubt; that EPIC could be used to simulate the sensitivity of maize,
sorghum and millet to seasonal rainfall. The model could therefore be satisfactorily employed in
the assessment of impacts of and adaptations to climate variability and climate change, not only
in site specific, but also in spatial analytic studies. The sensitivity capabilities are in giving
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measures of significance to the relationships between environmental factors and crop yield. Such
measures could then be translated into indices or measures of impact.

The validation tests show that differences in yield among the cultivars used in the trials are
generally greater than the average difference between the yield of each real world cultivar and
the model simulated yield for each site. The inference that could be readily made from this result
is that simulated yields and observed yields are sufficiently close for the former to be used as a
substitute for the latter. However with respect to production estimates and vulnerability
assessments with spatial analytical objectives, there is need for calibration based on more
rigorous field experimentation. There is also need for improvement in the amount and quality of
available data. It is possible that there are other crop models more suitable for crop-climate
studies in the sub continent. This possibility should be explored. Meanwhile EPIC could be
depended upon for impact and adaptation assessments and, subject to further field
experimentation, for the estimation of production.

With the limitations expressed in the preceding paragraph, the paper confirms the potential
suitability of the EPIC Crop Model for use in the study of the impacts of climate variability and
climate change on crop growth in Nigeria. These observations are based on the fact that the data
used in model testing have been collected at locations within the territorial limits of the country.
The modeled sites (Fig 1) cover the climatic and ecological profiles from the coastal rainforest
zone, though the sub-humid savanna and the semi arid Sudan and Sahel zones, to the southern
margins of the Sahara Desert. These zones extend westwards to cover the entire West African
sub-continent. They are also replicated in all the major regions of Sub-Saharan tropical Africa
excepting the high altitude locations in East Africa. The Guineo-Congolian Rain Forests extend
from coastal West Africa to the basin of the Congo River. The extensive Miombo
(Brachystergia) woodlands of East and Central Africa are the ecological and floristic equivalents
of the West African Isoberlinia woodlands. The Sahel and Sudan zones of West Africa also have
ecological equivalents at the borders of the Kalahari Desert. Although not with the same
intensity, the range of cultivation of West African crops extends to Central Africa. EPIC could
thus be adjudged suitable for modeling crop growth not only in Nigeria, but also throughout
lowland, tropical, Sub-Saharan Africa.

EPIC is credited with the capability to simulate the growth of many crops with the same data file.
This represents an advantage over other crop models in simulating the productivity of tropical
agricultural systems in which multi- and inter- cropping rather than mono- cropping is dominant.
Thus the same run of the model could result in outputs including yields of both early and late
crops, both major and minor crops, both heliophytic (light loving) and sciophytic (shade loving)
crops, or both creeping and climbing crops. EPIC also provides for simultaneous modeling of
changes in crop environment including those like moisture and nutrients, which constitute
constraints on productivity of tropical agricultural systems
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Table 1: Sensitivity of simulated crop yield to rainfall in Maiduguri, Nigeria

Rainfall Parameters  Simulated Yield of Crops in tons/ha

Year Jun-Jul-
Aug Rain

Jun
Rain

Jun-Jul
Rain

Number
of Rain
Days

Maize Sorghum Millet Rice

1988 516 87 270 39 2.808 2.294 0.775 0.790

1989 422 88 202 31 2.574 2.301 0.688 0.957

1990 367 47 230 26 2.430 2.134 0.654 0.842

1991 385 90 181 32 2.503 2.184 0.709 0.945

1992 450 41 154 35 1.706 1.493 0.427 0.685

1993 373 19 223 24 2.184 2.011 0.559 0.870

1994 285 50 117 33 1.339 1.204 0.353 0.526

1996 431 58 254 35 2.209 1.989 0.607 0.824

1998 461 60 239 32 2.992 2.504 0.836 0.888

1999 554 24 368 38 3.483 2.789 1.006 0.929
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Table 2: Correlation of Rainfall parameters with Simulated crop yield based on Table 1

Rain parameters Maize Sorghum    Millet         Rice

Growing period rain 0.7759* 0.7121* 0.7633* 0.4560

First Month rain 0.0948 0.1144 0.1084 0.2029

First two months rain 0.8696** 0.8445** 0.8666** 0.5831+

No of rain days 0.2622 0.1420 0.3095 0.1655

** r is significant at 99 percent confidence level

* r  is significant at 98 percent confidence level

+ r is significant at 90 percent confidence level

Table 3: Sensitivity of maize to temperature changes in Ibadan, Western Nigeria

Temperature
changes

Yield tonnes/ha  Increase in Yiel
tons/ha

Percentage Increase

A 2.607 --- ---
B 3.998 1.391 53.3
C 4.384 0.386 9.6
D 4.865 0.481 9.7
A = mean min and mean max temp 1970 – 1999
B = A max temp plus 1oC; A min temp plus 2oC
C = A max temp plus 2oC, A min temp plus 2oC
D = A max temp plus 2oC, A min temp plus 3oC

Table 4: Sensitivity of maize to different levels of solar radiation in Jos, Nigeria

Solar radiation levels Yield Tones/ha Increase in yield % Increase
A=mean 1961-99 2.607 - -
B=A plus 5 percent 2.759 0.152 5.8
C=B plus 5 percent 2.904 0.145 5.2
D=C plus 5 percent 3.062 0.158 5.4
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Table 5: Sensitivity of maize to different levels of CO2 concentration in Jos, Nigeria

Yield
tonnes/ha

Increase over baseline
Yield

Percentage increase over
baseline Yield

350 ppm 2.607 ---- ----
370 ppm 2.687 0.08 3.06
500 ppm 2.835 0.228 8.71
650 ppm 2.871 0.264 10.1

Table 6   Grain Yield (tons/ha) of early maturing open-pollinated maize varieties in the
1986 Nationally Coordinated maize trial at locations in Nigeria {IITA Maize Research
Programme 1986}

Stations-� Benin Ibadan Makurdi Kano Mokwa
Varieties
8321-18 4.4 6.4 4.5 8.0 4.9
8321-21 3.7 5.6 4.9 6.8 6.8
8595-2 3.8 5.2 4.2 7.0 5.1
8505-3 3.5 5.2 4.6 7.0 5.4
8346-3 3.0 5.1 4.7 5.1 5.4
8322-13 3.9 5.1 4.6 6.4 5.2
8428-19 3.3 4.9 5.5 6.6 4.8
8505-9 3.0 4.4 4.4 5.8 5.6
TZB Gusau 3.5 3.9 5.3 5.3 4.2
8505-1 3.6 5.2 4.9 5.1 4.4
8338-1 3.3 4.2 4.8 5.4 4.7
8505-5 3.4 4.8 4.3 6.0 5.1
8326-18 3.7 3.8 4.3 4.8 4.5
EV8443SR 3.8 4.4 4.5 5.7 4.1
FE27WSR 3.0 4.0 4.1 4.2 4.1
Mean 3.5 4.8 4.6 5.9 5.0
Coeff var 11 15 8 17 14
EPIC 3.8 5.3 4.7 5.6 5.1
EPIC/Mean
%

107 110 102 97 .102
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Table 7 Grain Yield (tons/ha) of upland rice varieties at three locations during 1986 wet
season (IITA Rice Research Program; Annual Report 1986)

Locations IBADAN IKENNE ONNE
Varieties
Tox 955-212-2-102 3 1.4 3.07
Tox 1854-02-2-2 2.17 1.61 2.48
Tox 955-208-12-1011.87 1.55 2.53
ITA 235 (check) 0.81 1.29 2.46
ITA 257 (check) 0.8 0.97 1.18
OS6 (check) 1.69 1.48 2.17
Standard Deviation 0.84 0.23 0.62
Mean 1.72 1.38 2.31
Coefficient of Var 49 17 27
EPIC         1.889       1.621      2.518
Epic/Mean
%          110         117    109

Table 8 Variations in EPIC simulated yields on different soils at the same location.

Location Parent rock Soil Series So i l  ma in
features

Yie ld /ha  i n
tonnes

Ibadan Igneous Iwo Clayey 3.739
Ibadan Igneous Apomu Sandy 1.689
Ibadan Igneous Osun Poorly drained 3.047
Benin Sedimentary Alagba Clayey 5.906
Benin Sedimentary Agege Clayey 4.011
Benin Sedimentary Kulfo Sandy 3.306
 Jos Lava Gwacl Clayey 5.205
Jos Lava Gwasd Sandy 4.070
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Table 9: Differences in EPIC simulated yields between varieties of maize

Locations Varieties of Maize Yields in tons/ha
Variety
M1

Variety
M2

Variety
M3

Mean
Yield

Stdev. Coeff of
variation
(%)

Ibadan 1.72 0.04 0.06 0.60 0.99 160
Benin 1.38 0.04 0.05 0.49 0.77 157
Lagos 0.86 0.02 0.03 0.30 0.48 160
Ilorin 1.87 0.26 0.97 1.03 0.81 78
Lokoja 6.47 1.67 6.46 4.87 2.77 58
Enugu 3.00 0.48 1.84 1.77 1.26 71
Calabar 6.67 1.62 6.39 4.89 2.84 58
P.H 3.15 0.36 1.35 1.62 1.41 87
Maiduguri 0.76 0.03 0.07 0.28 0.41 141
Bauchi 1.75 0.07 0.18 0.66 0.94 140
Jos 2.47 0.06 0.09 0.87 1.38 159
Kano 0.97 0.04 0.11 0.37 0.52 140
Kaduna 2.11 0.07 0.11. 0.78 1.17 150
Sokoto 0.93 0,03 0.06 0.34 0.51 150
Minna 2.12 0.07 0.17 0.78 1.16 150

Coefficient of Variation is Standard Deviation divided by the Mean

Table 10: Yields based on different evapotranspiration equations

OBSERVED YIELDS
Varieties of maize

                CROP MODEL OUTPUTS
                    (Varying ET Equations)

Year Dmr.lsr.y Suwan.1.sr PenmanM Penman PriestleyT Hargraves BaierR
1996 1.569 1.440 1.734 2.176 2.607 2.651 2.778
1997 1.022 1.246 1.549 1.870 2.314 1.697 2.184
1998 1.220 1.397 1.559 1.842 2.245 2.530 2.990

Table 11: Yields based on different levels of ‘Potential Heat Units’

OBSERVED YIELDS
   (Varieties)

CROP MODEL OUTPUTS
(Varying potential heat units)

Year Dmr.lsr.y Suwan.1.sr 1000 1200 1500 1800 2000
1996 1.569 1.440 1.491 1.734 1.965 2.069 1.885
1997 1.022 1.246 1.391 1.549 1.706 1.983 1.821
1998 1.220 1.397 1.260 1.559 1.824 2.159 1.018


